Cyanuric acid hydrolase: evolutionary innovation by structural concatenation

نویسندگان

  • Thomas S Peat
  • Sahil Balotra
  • Matthew Wilding
  • Nigel G French
  • Lyndall J Briggs
  • Santosh Panjikar
  • Nathan Cowieson
  • Janet Newman
  • Colin Scott
چکیده

The cyanuric acid hydrolase, AtzD, is the founding member of a newly identified family of ring-opening amidases. We report the first X-ray structure for this family, which is a novel fold (termed the 'Toblerone' fold) that likely evolved via the concatenation of monomers of the trimeric YjgF superfamily and the acquisition of a metal binding site. Structures of AtzD with bound substrate (cyanuric acid) and inhibitors (phosphate, barbituric acid and melamine), along with mutagenesis studies, allowed the identification of the active site. The AtzD monomer, active site and substrate all possess threefold rotational symmetry, to the extent that the active site possesses three potential Ser-Lys catalytic dyads. A single catalytic dyad (Ser85-Lys42) is hypothesized, based on biochemical evidence and crystallographic data. A plausible catalytic mechanism based on these observations is also presented. A comparison with a homology model of the related barbiturase, Bar, was used to infer the active-site residues responsible for substrate specificity, and the phylogeny of the 68 AtzD-like enzymes in the database were analysed in light of this structure-function relationship.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expanding the cyanuric acid hydrolase protein family to the fungal kingdom.

The known enzymes that open the s-triazine ring, the cyanuric acid hydrolases, have been confined almost exclusively to the kingdom Bacteria and are all homologous members of the rare cyanuric acid hydrolase/barbiturase protein family. In the present study, a filamentous fungus, Sarocladium sp. strain CA, was isolated from soil by enrichment culturing using cyanuric acid as the sole source of n...

متن کامل

Ancient Evolution and Recent Evolution Converge for the Biodegradation of Cyanuric Acid and Related Triazines.

Cyanuric acid was likely present on prebiotic Earth, may have been a component of early genetic materials, and is synthesized industrially today on a scale of more than one hundred million pounds per year in the United States. In light of this, it is not surprising that some bacteria and fungi have a metabolic pathway that sequentially hydrolyzes cyanuric acid and its metabolites to release the...

متن کامل

Structure of the Cyanuric Acid Hydrolase TrzD Reveals Product Exit Channel

Cyanuric acid hydrolases are of industrial importance because of their use in aquatic recreational facilities to remove cyanuric acid, a stabilizer for the chlorine. Degradation of excess cyanuric acid is necessary to maintain chlorine disinfection in the waters. Cyanuric acid hydrolase opens the cyanuric acid ring hydrolytically and subsequent decarboxylation produces carbon dioxide and biuret...

متن کامل

Cyanuric Acid Hydrolase from Azorhizobium caulinodans ORS 571: Crystal Structure and Insights into a New Class of Ser-Lys Dyad Proteins

Cyanuric acid hydrolase (CAH) catalyzes the hydrolytic ring-opening of cyanuric acid (2,4,6-trihydroxy-1,3,5-triazine), an intermediate in s-triazine bacterial degradation and a by-product from disinfection with trichloroisocyanuric acid. In the present study, an X-ray crystal structure of the CAH-barbituric acid inhibitor complex from Azorhizobium caulinodans ORS 571 has been determined at 2.7...

متن کامل

Structural and biochemical characterization of the biuret hydrolase (BiuH) from the cyanuric acid catabolism pathway of Rhizobium leguminasorum bv. viciae 3841

Biuret deamination is an essential step in cyanuric acid mineralization. In the well-studied atrazine degrading bacterium Pseudomonas sp. strain ADP, the amidase AtzE catalyzes this step. However, Rhizobium leguminosarum bv. viciae 3841 uses an unrelated cysteine hydrolase, BiuH, instead. Herein, structures of BiuH, BiuH with bound inhibitor and variants of BiuH are reported. The substrate is b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 88  شماره 

صفحات  -

تاریخ انتشار 2013